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Impression management, as one of the most essential skills of social function, impacts

one’s survival and success in human societies. However, the neural architecture

underpinning this social skill remains poorly understood. By employing a two-person

bargaining game, we exposed three strategies involving distinct cognitive processes

for social impression management with different levels of strategic deception. We

utilized a novel adaptation of Granger causality accounting for signal-dependent

noise (SDN), which captured the directional connectivity underlying the impression

management during the bargaining game. We found that the sophisticated strategists

engaged stronger directional connectivity from both dorsal anterior cingulate cortex and

retrosplenial cortex to rostral prefrontal cortex, and the strengths of these directional

influences were associated with higher level of deception during the game. Using the

directional connectivity as a neural signature, we identified the strategic deception with

80% accuracy by a machine-learning classifier. These results suggest that different social

strategies are supported by distinct patterns of directional connectivity among key brain

regions for social cognition.

Keywords: impression management, economic games, signal-dependent noise, directional connectivity, support

vector machine

INTRODUCTION

How we are viewed by other people has a significant impact on our daily social interactions (Lyle
and Smith, 2014). A positive social image affects one’s survival and success in larger-scale societies,
for example, it helps individuals to achieve a successful career, develop satisfying relationships and
gain greater social support (Lyle and Smith, 2014). Individuals take different actions to manage
their social images in other’s mind, such as showing trust on others, punishing those who take free
ride, engaging in costly cooperation, mimicking others’ behavior, or employing strategic deception
(Panchanathan and Boyd, 2004; Bhatt et al., 2010; Phan et al., 2010; Jordan et al., 2016). However,
the neural architecture underlying these different strategies to manage impression remains poorly
understood.
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To build up and manipulate impression require us to model
the beliefs and desires of other people (Frith and Frith, 2005;
Amodio and Frith, 2006; Sanfey, 2007) and to send signals
that could manipulate others’ perceptions of ourselves (Tennie
et al., 2010). This kind of modeling and impression management
sometimes require sophisticated strategies. Recently, cognitive
probes paired with function magnetic resonance imaging (MRI)
have begun to reveal neural underpinnings of impression
management and to decompose the component computation
or different strategies involved in such sophisticated exchanges
(King-Casas et al., 2005; Behrens et al., 2009). In line of
recent works on the neural responses engendered during social
interactions (Keysers and Gazzola, 2007; Bara et al., 2011;Manera
et al., 2011), several brain areas have been identified as parts
of a possible “theory of mind” network (Carrington and Bailey,
2009). For example, positive social images were associated with
stronger neural activation in the reward system, including ventral
striatum and orbitofrontal cortext (Delgado et al., 2005; Phan
et al., 2010; Fouragnan et al., 2013). Four such response profiles
were highlighted in a recent study by Bhatt et al. (2010). Using a
simple model for categorizing the interpersonal exchange during
a two-party bargaining game, subjects in our experiment fell into
three distinct behavioral groups that depended on their strategic
sophistication during the bargaining: (1) incrementalists, (2)
conservatives, and (3) strategists or strategic deceivers. The
“incrementalists” employed a simple strategy of anchoring their
social signals to the truth, and showed stronger activation in
the dorsal anterior cingulate cortex (dACC). Mimicking a more
benign behavioral type, individuals with high level of strategic
deception employed a sophisticated strategy to build up a positive
impression. These strategists showed stronger activation in the
right dorsolateral prefrontal cortex (DLPFC), rostral prefrontal
cortex (rPFC or BA10) and retrosplenial cortex (RSC), but
less activation at the middle paracingulate cortex (MPC). The
“conservatives” chose not to send any useful information at all.

Most literatures have focused on identifying differentially
activated brain regions by distinct social strategies, however, little
is known about how the responses in these brain regions might
interact. Brain functional integration can be investigated by the
statistical models of the information flows traveling among brain
regions (Friston, 2002). It has been recently shown that complex
social processes are supported by different brain networks (Park
and Friston, 2013), such as motives behind human altruism
(Hein et al., 2016). Currently, much of our understanding of
the directional connectivity among brain regions comes from
the mathematical modeling of brain networks (Friston, 2002).
For example, the classical Granger causality analysis (GCA)
estimates the directional connectivity via an autoregressivemodel
(Ding et al., 2006), and the dynamic causal modeling (DCM)
approximates the dynamic interaction between brain areas with a
bilinear model (Friston et al., 2003). However, one possible over-
simplification in some scenarios is that the noise process in neural
signal has been assumed to follow a time invariant model. As
the spike train of a neuron is typically close to Poisson processes
in their timing, the variance thus increases linearly with the
signal (Gerstein and Mandelbrot, 1964). In addition, such signal-
dependent noise (SDN) has been demonstrated to be functionally

important, for example, as an optimal control strategy for motor
planning (Harris and Wolpert, 1998). However, in presence of
the SDN in the blood-oxygen-level dependent (BOLD) signal
recorded from the fMRI experiments (Luo et al., 2013), neither
the classical GCA nor the DCM is applicable, as both models
assuming a constant-level of variance for the brain signal.
Therefore, we have proposed an adaptation of the classical GCA
to model the SDN, and be thus sensitive to the variance-affected
interactions that other methods would miss (Luo et al., 2011,
2013). Applying this model to the fMRI data of the two-party
bargaining game, we uncovered the information flows traveling
among key brain regions mediating the impression management,
and accurately identified the strategic deception during social
interaction using the estimated directional connectivity as a
neural signature.

MATERIALS AND METHODS

Participants
A total of 76 healthy participants (36 females; Mean ±

SD age= 29.6 ± 7.6; Mean ± SD IQ = 117.2 ± 19.4; Mean
± SD social economic status = 42.8 ± 3.5) participated in
the accordance with a protocol approved by the Baylor College
of Medicine Institutional Review Board. Informed consent was
obtained from all participants, and all procedures were in accord
with the ethical standards set out in the Declaration of Helsinki.
We refer to our previous studies (Bhatt et al., 2010) for more
details of the participants.

The No-Feedback Bargaining Game
In this game, two players, a buyer and a seller, played 60 rounds
of a bargaining task (Figure 1A). The duration of each trial was
self-paced depending on how long it took for the participant
to respond. The inter-trial-interval was randomized according
to a uniform distribution from 4 to 6 s. The scan continued till
the participants finished all 60 rounds of bargaining trials. For
each bargaining trial, the “buyer” was first given the private value
v of a hypothetical object by a computer. The buyer was then
asked to “suggest a price” to the seller (values and prices were
integers, 1–10). After the seller received the suggestion, she/he
was asked to offer a price p. If the offered price was less than the
private value of the object, the trade executed, and the seller and
the buyers received values of p and v-p, respectively; otherwise,
the trade failed and no one got any value. No feedback about
whether the trade executed was provided to either the seller or
the buyer. However, despite the lack of feedback, sellers often
did form inferences about buyer credibility based on the stream
of suggestions sent and many buyers were aware of this fact,
prompting them to attend to maintaining the appearance of
credibility (Figure 1B). As shown in Figure 1B, the sellers got all
their information about the value of the item from the buyers.
When the seller saw a sequence of varying prices suggested by the
buyers during the game, they might think that the buyers were
suggesting prices according to the true values of the item. Indeed,
some buyers (the incrementalists) did anchor their suggesting
prices to the true values so as to share the rewards with the sellers.
However, the strategist group also sent out a sequence of varying
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FIGURE 1 | Two-person bargaining game. (A) Task design; (B) Reputation formation in different behavioral groups. Although, there was no feedback in the task,

sellers saw the stream of suggestions sent by the buyers. They could make inferences about the buyer based on these streams. In the example above we

demonstrated the suggestions that might be sent out by each of the three behavioral types for a fixed sequence of underlying values. Noticed that a seller could easily

infer from the low variance of the conservatives suggestions that they were unlikely to convey any useful information. On the other hand, the incrementalist’s

suggestions conveyed a great deal of information about the values and a seller could use these suggestions to his benefit. The strategist took advantage of the fact

that sellers were more likely to trust and use suggestions when the stream of suggestions had high variance. They could use the trials when the actual values were low

in this example when they were 3 and 2 to build their reputation by sending higher suggestions, mimicking an incrementalist profile. When the values were high, they

could send relatively low suggestions and take advantage of the credibility they had built during the low-value trials. Noticed that from the seller’s perspective, the

incrementalists and strategists were essentially indistinguishable, sending the same mixture of suggestions, however the relationship of these suggestions to the

underlying values were completely different.

prices, only that they suggested high prices for items with low
values but low prices for items with high values. It was difficult
for the sellers to tell the difference between these two strategies
from the observation of a sequence of varying prices without
any feedback. Of course, it was easy for the sellers to identify
the conservatives, as they sent out constantly low prices all the
time.

To model the bargaining strategy during the game, the buyers’
suggestions were regressed on the real values of the items
by a linear model after their behavior stabilized in the game.
From these linear regressions, two behavioral characteristics
were extracted, i.e., the slope and the R2 of the regression, and
were used to identify different behavioral groups in buyers by a
clustering algorithm. The slope of the linear model was used as a
parameter of information relevance representing the bargaining
strategy, and was referred as a buyer’s “information revelation”

coefficient (IR). We used the k-means in a two-dimensional
feature space, consisting of the IR and the R2, where k= 3.

Both players received their aggregate earnings over 60 trials
at a predetermined exchange rate at the end of the experiment.
This is a hyper-scanning experiment, i.e., each player was in an
fMRI scanner for the entire session while they were playing the
designed bargain game in real-time. The brain activation patterns
had been reported previously for both the buyers (Bhatt et al.
2010) and the sellers (Bhatt et al., 2012). Here in this paper, we
focused on the neural network architecture in buyers, and the
effects of the social interaction on the modulation of directional
connectivity would be carried out in a separate study. As reported
previously (Bhatt et al., 2010), no significant correlation had been
identified between the final rewards collected by the buyers and
their characterizations, including age, IQ, socioeconomic status,
and gender. In our analysis, we did not find any correlation
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between these characterizations and the estimated directional
connectivity.

Image Acquisition and Preprocessing
The fMRI data were collected using 3-T Siemens scanners.
High-resolution T1-weighted scans were acquired using a
magnetization prepared rapid gradient echo sequence. Whole-
brain echo planar images were acquired with BOLD contrast and
a repetition time of 2,000ms (echo time, 25ms). Thirty-seven
4-mm slices were acquired 30 degrees off the anteroposterior
commissural line, yielding 3.4 × 3.4 × 4.0mm voxels. The fMRI
data were preprocessed in our previous study (Bhatt et al., 2010)
using the SPM (http://www.fil.ion.ucl.ac.uk/spm) with standard
procedures, such as slice-timing correction, motion correction,
coregistration, normalization to the Montreal Neurological
Institute template, and high-pass filtered (128 s).

fMRI Time-Series
Time series data were extracted and averaged over voxels in
each of the regions of interest (ROIs), which were defined by
the activation analysis in our previous study (Bhatt et al., 2010),
including rPFC (−32, 48, 20), DLPFC (36, 28, 36), RSC (8, −56,
8), dACC (−4, 20, 32), and MPC (0, 4, 56). Brain activities
in these regions were associated with different strategies for
impression management in the two-person bargaining game.
Particularly, compared with conservatives and incrementalists,
strategists showed stronger activity in the rPFC and DLPFC,
revealed by first-level boxcar regressors over the entire trial
(onset to decision), and stronger RSC activity at the moment of
deception. Moreover, stronger activations in the dACC andMPC
were found in the incrementalists, relative to conservatives and
strategists. Here, in this paper, we also estimated the brain activity
of each region by comparing the signal during choice making
with the signal at trial onset, and calculated the median of such
ratios among the last 30 trials. The bargaining behavior wasn’t
stable at earlier trials, thus only the second half of the trials were
used for the analysis, i.e., only the last 30 trials were used for each
subject. The group difference in brain activity can be tested by
one-way analysis of variance (ANOVA).

In order to carry out the analysis of directional connectivity,
we controlled for the event-induced dynamic, since this dynamic
might constitute a common driver of brain activities in all
these brain regions. Here, we convolved the event train with a
hemodynamic response function (HRF), particularly, the fourth
order Fourier HRF established by SPM8, and then regressed out
this event signal from all brain regions. Next, BOLD signals were
detrended. As recommended by Wen et al. (2012), we did not
regress out the head motion from the time series to prevent
from over-preprocessing. In line with the literature (Johnstone
et al., 2006; Schreiber and Krekelberg, 2010; Wen et al., 2012),
regressing out the head motion parameters would lead to
spurious activation effects, especially when these parameters are
correlated with experimental design (event train). In our case,
we first convolved the event train with the HRF (4-th Fourier
series) and then down-sampled to the same sampling rate as the
motion parameters; and second, we calculated the correlation
between the motion parameters and the experiment design. The

percentages of significant correlation (p < 0.05) between motion
parameters (translation and rotation) and the event trains were
high for three event trains: trail onset (66.5%), choice making
(68.4%), key pressing (90.1%). Therefore, regression out the
motion parameters would compromise the experiment design in
our case and render our analysis to be insensitive. However, we
did compare the head motion parameters for both displacement
(p = 0.55) and rotation (p = 0.82) among three behavioral
groups, and no significant group difference were observed.
Also, we had calculated the behavioral correlation between the
motion parameters and the information revelation (IR) both
in all subjects and in each group, and no correlation reached
any significant level. Therefore, in our case, the identification
of group comparison and behavioral correlation are unlikely
to be confounded by the head motion. However, we did
compare the head motion parameters for both displacement (p
= 0.55) and rotation (p = 0.82) among three behavioral groups,
and no significant group difference were observed. Also, we
had calculated the behavioral correlation between the motion
parameters and the information revelation (IR) both in all
subjects and in each group, and no correlation reached any
significant level. Therefore, in our case, the identification of
group comparison and behavioral correlation are unlikely to
be confounded by the head motion. Inter-trial scans were then
excluded, limiting our attention to the time-series data for choice-
making trials of the buyers. Each observation consisted of the
time-series from one trial, beginning at the trial onset, and ending
when the buyer made the choice. For each trial, the time series
were also demeaned. Here, we are going to use the Granger
causality model with SDN for the non-stationary time series
(Luo et al., 2011), that has been demonstrated to be a promising
tool for causal inference on both simulated and experimentally
collected BOLD signals (Luo et al., 2013).

Detection of Signal-Dependent Noise
To detect if the SDN existed in the BOLD signals, we first
estimated a standard autoregressive (AR) model to our data and
examined the correlation between the residual process of this
analysis and the squared signals of the time-series. If the AR
model fits the data, the variance level of the residual process
would be Gaussian white noise with no temporal correlation
with the signal; Otherwise, if a significant correlation has been
observed between the residual process and the strength of the
signal with one time lag, the residual process is not a Gaussian
white noise process and the precondition of the classic AR model
is not satisfied. Mathematically, for the BOLD signal observed
at each brain region, the strength of the noise (or, residual)
process at each time step was measured by the squared residual
process, û2t , established by the autoregressive model. The AR

can be formulated as Xt =

p∑
i=1

AiXt−i + ut , where Ai is the

model coefficient and ut is the Gaussian white noise process with

a constant variance. Using the least-square estimation, we can

estimate the model coefficient as Âi, and then the residual process

is given by ût = Xt−

p∑
i=1

ÂiXt−i. The strength of the lagged signal
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is measured using the squared signal with one time lag, X2
t−1.

Outliers of the data (X2
t−1, û

2
t ) were filtered out using a criterion

of 3-sigma. By pooling the data for all five regions together, the

variance level of the noise process, û2t , could be plotted against

the strength of the BOLD signal with one time lag, X2
t−1.

To avoid the possibility that the observed correlation was a
model-specific result, we used two alternative models for the
BOLD signal to assess the SDN. The residual processes were
established, respectively by ût = Xt − ÂiXt−1 − B̂1X

2
t−1 and

ût = Xt − Fourier 6(Xt−1), where Fourier 6(·) was the Fourier
series in the 6th order.

Granger-Causality with SDN
To deal with the SDN observed in BOLD signal, we proposed a
new algorithm (Luo et al., 2011) and successfully applied to fMRI
data analysis to identify different directional networks modulated
by biased attentions in our previous study (Luo et al., 2013). The
proposed algorithm was based on a simple idea of prediction
as the classical Granger causal modeling (Granger, 1969). If
including the history information of time series Y improves the
prediction accuracy of time series X, then changes in Y cause
changes in X. Mathematically, suppose we have time series data
from two ROIs, X and Y. We want to infer whether Y causally
influences X. Consider the following two models for X:

Xt =

p∑

i=1

Axx,iXt−i + rxx,t , rxx,t = H
1/2
xx,tuxx,t ,

Hxx,t = C′
xxCxx +

q∑

i= 1

B′xx,jXt−jX
′
t−jBxx,j,

and,

Xt =

p∑

i= 1

Axy,iXt−i +

p∑

i= 1

Dxy,iYt−i + rxy,t ,

rxy,t = H
1/2
xy,tuxy,t ,

Hxy,t = C′
xyCxy +

q∑

i= 1

B′xy,j[X
′
t−j,Y

′
t−j]

′[X′
t−j,Y

′
t−j] Bxy,j,

where p and q are the model orders, Axx, i, Axy, i, Dxy, i, i = 1,
. . . , p, Bxx, j, Bxy, j, j = 1, . . . , q and Cxx, Cxy, are all coefficient
matrices and uxx, uxy are Gaussian white noise processes. Clearly,
if the coefficients Bxx, j and Bxy, j are all zeros, these models are
deduced to the classical autoregressive (AR) models, since the
signal-dependent variances of the noise processes, rxx,t and rxy,t ,
become constants in this case. Here the H matrices describe the
predicted noise for each model. Since the above models forH are
similar to the BEKK (named after Baba, Engle, Kraft, and Kroner)
model for time-varying volatility (Baba et al., 1991), we refer
to these models as AR-BEKK models. The first model assumes
no causal influence from Y to X, while the second allows Y to
affect both the signal and the variance of X. Notice that in these
models the errors are modeled in more detail than in a classical
Granger setup, so the level of unexplained error for each of these
models are represented by Cxx, and Cxy, respectively. Thus, we

can define a causality statistic as below, the larger the statistic,
and the stronger the directional connectivity.

FY→X = log
trace[C′

xxCxx]

trace[C′
xyCxy]

Given the TR was 2 s, we used p= q= 1 in this analysis following
the literature (Wen et al., 2012; Luo et al., 2013; Ding et al., 2015).
For more details regarding to the model of the Granger causality
with SDN and its validation in both simulated and experimentally
collected BOLD signals, we refer to our previous studies (Luo
et al., 2011, 2013). A Matlab toolbox of this algorithm is also
available at http://www.dcs.warwick.ac.uk/~feng/causality.html.

Group Difference and Behavioral
Correlation
To find the most informative brain interaction from all
directional connectivity estimated, we first tested whether the
directional connections among the 5 ROIs (i.e., 20 directions)
were significantly >0 by one sample t-test collapsing different
strategy groups, and found that all the 20 directions were
significantly connected. Next, we compared the directional
connectivity between strategy groups and assessed the linear
association between the directional connectivity and the
bargaining strategic indices (e.g., the information revelation and
the R2). Since the time-series data with SDN usually have high-
level noise, the model might fail to give reliable estimation
due to limited data points. In this analysis, we excluded those
estimated causalities outside a range of ±2.7 standard deviations
(approximately 99.3% coverage of a normally distributed data)
from the mean causality at each direction from each strategic
group. The average number of subjects excluded from each group
at each direction was 1.5. Therefore, to identify group differences
and behavioral associations the significance level was corrected
for multiple comparisons among all 20 directions (Bonferroni
correction, i.e., p < 0.05/20).

Demonstration of the Extra Information
Provided by the Brain Circuit in Addition to
the Brain Activation
To demonstrate that the directional influences among brain
regions provide extra information than the brain activations
for us to understand the underlying neural circuits of strategic
deception during the game, we built classification models
with different input features and compared their performances
in terms of classification accuracy for identifying strategic
deception. Considering the potential interactions between the
ROI’s, we employed multivariate classifier instead of the linear
models. Particularly, we used the Support Vector Machine
(SVM) (Chih-Chung and Chih-Jen, 2011) implemented by
LIBSVM, which can be downloaded at the following website
http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Using brain activities
or directional connectivity as input features, we built three
SVM’s to identify the strategic deception from other behavioral
types. The first model took input of five brain activations,
the second model used the twenty directional connectivity as
inputting features, and the third model combined the features
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in the first and the second models. The brain activity was
estimated by comparing the signal during choice making with
the signal at trial onset, and calculated the median of such
ratios among the last 30 trials. The directional connectivity was
estimated by the proposed GCSDN approach. In SVM, the linear
kernel was used to reduce the model complexity and thereby to
reduce the possibility of overfitting. The regularization parameter
in the model was set to be 10 to get the best classification
result by the first SVM model, and the other two models used
the same set of parameters to ensure a fair comparison. We
used leave-one-out procedure to prevent the problem of over-
fitting, i.e., the model was trained in 75 subjects, but applied
to the one subject left. The averaged accuracy of 76 leave-one-
out experiments was used to measure the performance of the
classifier. To further assess specificity and sensitivity of different
classifiers, we plotted the receiver operating characteristic (ROC)
curve for each classifier, and compared the area under curve
(AUC) (Fawcett, 2006) among different classifiers. As the AUC
has been considered to be too conservative to assess the
improvement in classification by including new markers, we
employed two new measures to evaluate the improvement
in classification by adding directional connectivity to brain
activation, the net reclassification improvement (NRI) and the
integrated discriminative improvement (IDI) (Pencina et al.,
2008). The NRI quantifies the correct movement in categories
by including new features, i.e., reclassifying cases into case group
and controls into control group; The IDI focuses on differences
between average sensitivity and specificity for models before and
after including extra new features. A significant improvement
is identified when the statistical tests give a significant (<0.05)
p-value (Pencina et al., 2008).

RESULTS

Behavioral Groups
By k-means in a two-dimensional feature space, consisting of
the IR and the R2 (Bhatt et al., 2010), the buyers fell into
three distinct behavioral groups depending on their strategic
sophistication during the bargaining: (1) conservatives (n = 28),
(2) incrementalists (n = 32), and (3) strategists (n = 16). The
“conservatives”, characterized by IRs close to zero (Mean ±

SD = 0.13 ± 0.23) and intermediate or low fit (Mean ± SD
= 0.24 ± 0.18), chose not to send useful information at all.
The “incrementalists,” who generally showed relatively high IRs
(Mean ± SD = 0.57 ± 0.18) and high fit (Mean ± SD = 0.80
± 0.15), employed a simple strategy of anchoring their social
signals to the truth. The “strategists”, exhibiting a negative IR
(Mean ± SD = −0.68 ± 0.21) and high fit (Mean ± SD =

0.54 ± 0.17), adopted a sophisticated, forward-looking strategy
aiming at projecting an impression of trustworthiness first and
next exploiting the trust built up in their partner (Figure 1B).

fMRI Data Exhibits Signal-Dependent
Noise
As demonstrated earlier that the BOLD signal in fMRI
experiment can have the SDN (Luo et al., 2011, 2013), we tested if
the BOLD signals of the brain ROI in the current study have such

SDN. For the AR model used by the classical Granger causality,
the significances of the correlation between model residual and
signal were all smaller than 10−6 (Figure 2), which suggested
that those models assuming a constant noise level in the BOLD
signal (e.g., AR model) were not applicable to the current data.
We increased the complexity of the model to see if the observed
correlation was due to a miss specifying of the model for the
BOLD signal. Neither including a second order term, nor using a
highly nonlinear model (i.e., 6th order Fourier series) decreased
the correlation (Figure 2). This result suggested that the observed
SDN might be a nature of the BOLD signal.

Group Difference in Directional
Connectivity between Brain Regions
As information flows among brain regions can be estimated
by directional connectivity between ROI’s, we assessed the
directional connectivity between each pair of these 5 brain
regions underlying impression management by employing
the Granger causality with SDN. To identify information
flows responsible for strategic deception, we carried out one-
way ANOVA with group (incrementalists, conservatives, or
strategists) as a between-subject factor to reveal whether
the directional interactions among these brain regions were
significantly different among different strategic groups.We found
that the directional connectivity from RSC to rPFC, fromDLPFC
to rPFC and from dACC to rPFC were significantly modulated
by strategic groups (p < 0.0025, after Bonferroni correction for
20 directional connectivity). Post-hoc analyses confirmed that the
identified directional connectivity were significantly stronger in
the strategists than incrementalists and conservatives (Table 1
and Figure 3).

Behavioral Association of Directional
Connectivity
To investigate the behavioral correlation of the estimated
directional connectivity, we calculated the Person’s correlation
coefficients between the strength of directional connectivity and
the behavioral measurements (e.g., the information revelation
and the R2). We found that after Bonferroni correction
(p < 0.05/20) three directional connectivity of RSC→rPFC
(r =−0.3813, p = 0.0009), dACC→rPFC (r = −0.3920,
p= 0.0007), and MPC→rPFC (r = −0.3561, p = 0.0018),
were negatively correlated with the slope, referred as buyers’
information revelation coefficient (Figure 4), but not the fitness
(i.e., the R2). The directional connectivity from rDLPFC to
rPFC did not survive the Bonferroni correction, but the
directional connectivity in this direction also negatively (r =

−0.3485, p= 0.0029) associated with the information revelation.
Moreover, neither IQ nor earnings of the game associated with
the directional connectivity.

Identification of Social Deception by
Neural Signatures
As both brain activations and directional connectivity were
implicated in the bargaining strategy during the game, we tested
if these brain signals can be used as a neural signature for the
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FIGURE 2 | Signal-dependent noise. The strength of the signal at time t-1 was measured by the squared signal X2
t−1, while the noise level of the residual process was

given by the squared residual at time t (û2t ) by different models (presented as the title of each subplot) of the BOLD time series. The strengths of the signals were

binned into 7 bins. For each bin, the corresponding mean value (crosses) and the corresponding standard error (error bar) of the noise levels in each bin were

established. The lines are the linear fits of the mean values of the noise levels to the centers of bins of the strengths of the signals. The correlation coefficients (CC)

between the noise level and the strength of the signal as well as the corresponding p-values (p) are also reported.

strategic deception. Consistent with our previous study (Bhatt
et al., 2010), we also found the greater brain activations of rPFC
(p = 0.0009 by ANOVA) and DLPFC (p = 0.0003 by ANOVA)
during the game could be used as a neural signature of strategic
deception. To assess the quality of these neural signatures
(i.e., the brain activations and the directional connectivity),
we trained SVM classifiers taking various neural signatures as
input-features, including the activations of five brain regions,
or the directional connectivity, or both. By a leave-one-out
cross-validation procedure, we got 78.9% accuracy of identifying
strategic deception by using the brain activations. Using the
directional connectivity, we achieved 80.3% of classification
accuracy. Combining both features of estimated levels of
brain activations and strengths of directional connectivity, we
improved the classification accuracy to 85.5%. The sensitivity and
specificity of these classifiers were compared by the ROC curves
(Figure 5). Features of brain activations gave an area under

curve (AUC) as 0.6792, and directional connectivity achieved
an AUC of 0.7573. Combined both features, we had an AUC as
0.7844. No significant difference was detected in AUC between
these three classifiers. However, we confirmed the improvement

in classification by adding the directional connectivity into
the input-features of brain activations by both the (NRI,
p= 0.0120) and the integrated discrimination improvement
(IDI, p = 0.0007). These results suggest that directional
connectivity lends extra neuronal support beyond brain
activation to facilitate strategic deception during impression
management.

DISCUSSION

Impression management has a significant impact on social
interaction; different individuals employed distinct strategies
to manipulate social images in others’ mind. By a two-party
bargaining game, we have exposed three types of strategies
for impression management, but neural circuits supporting
various social strategies remains unclear. Employing an advanced
statistical model for causal inference, namely the Granger
causality with SDN, we identified a significant pattern of
directional connectivity among the key brain regions for social
interaction during the game. We also identified the modulation
of the directional connectivity by different social strategies.
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TABLE 1 | Comparison of directional connectivity across three behavioral groups.

Directional connectivity INC CON STRAT p-value Directional connectivity INC CON STRAT p-value

RSC—>rPFC 0.10 0.12 0.36 0.0009 rPFC—>RSC 0.11 0.14 0.18 0.3727

RSC—>MPC 0.17 0.07 0.10 0.0224 MPC—>RSC 0.10 0.10 0.11 0.9251

RSC—>rDLPFC 0.07 0.13 0.12 0.1086 rDLPFC—>RSC 0.10 0.09 0.13 0.5740

rDLPFC—>rPFC 0.10 0.09 0.24 0.0016 rPFC—>rDLPFC 0.08 0.10 0.07 0.7623

rDLPFC—>MPC 0.11 0.06 0.11 0.1820 MPC—>rDLPFC 0.15 0.13 0.16 0.8252

dACC—>rPFC 0.12 0.11 0.33 0.0022 rPFC—>dACC 0.05 0.17 0.07 0.0044

dACC—>MPC 0.16 0.07 0.22 0.0079 MPC—>dACC 0.11 0.15 0.16 0.6172

dACC—>RSC 0.09 0.13 0.24 0.0109 RSC—>dACC 0.12 0.13 0.04 0.0632

dACC—>rDLPFC 0.11 0.12 0.22 0.0429 rDLPFC—>dACC 0.11 0.09 0.12 0.6773

MPC—>rPFC 0.14 0.21 0.32 0.0542 rPFC—>MPC 0.12 0.12 0.12 0.9995

The p-values were given for the one-way ANOVA. The mean causality at each direction was also listed for each strategic group. The strongest causal influences among the three groups

were marked in bold. The p-values of those with significant (p < 0.05/20, Bonferroni correction) group-difference were in bold.

FIGURE 3 | Directional connectivity with significant group difference after

Bonferroni correction. (A) Brain map for three directional connectivity; (B)

Group comparison of the strength of directional connectivity. INC,

incrementalists; CON, conservatives; STRAT, strategists.

Especially, we showed that the strategists, who adopted a
sophisticated, deceptive strategy to manipulate their social image,
engaged stronger directional connectivity from both the RSC and
dACC to rPFC during the game, and the connectivity strengths
were associated with a behavioral indicator for the level of
deception. To classify the strategic deception by neural signals, we
found that the including the directional connectivity improved
the classification accuracy of the classifier based on the brain
activities. This significant improvement suggests that distinct
patterns of connectivity among key brain regions underlying
different social strategies.

These directional connections were used to identify
individuals who adopted a strategic deception in the bargaining
game. We have shown significant correlation between the
strength of the directional connections (i.e., connections from
RSC, dACC, and MPC to rPFC) and the buyers’ information

revelation (a behavioral index characterizing different strategies),
suggesting that the sophisticated, deceptive strategy is supported
by specific directional connectivity among key brain regions
engaged in the impression management. Due to the limited
number of subjects in each behavioral categories in the
current sample, we could not use the k-fold cross-validation.
Instead, we employed the leave-one-out procedure to assess
the model performance, which is an unbiased estimation of the
classification accuracy but with variance. Larger sample size is
required in future experiments to further test this classification
accuracy. Nevertheless, the current finding is along the same
line as recent studies associating the directional connectivity
with complex cognitive processes during social interactions. For
example, moral processing on different issues invoked different
directional connectivity (Cáceda et al., 2011), as justice issues
(relative to care issues) were associated with stronger directional
connectivity from both frontal pole (FP) and ACC to pSTS
(posterior superior temporal sulcus), while care issue process
was characterized by stronger connectivity from FP to ACC.
Another recent example showed that motivation of empathy
or reciprocity driving altruistic decision employed different
directional connectivity (Hein et al., 2016). The empathy-
motivated altruism was associated with a positive connectivity
fromACC to anterior insular (AI) and reciprocity-based altruism
was additionally related to positive connectivity from AI to both
the ACC and ventral striatum. Notably, in both studies no brain
activation was differentially modulated for different cognitive
calculations, but the directional connectivity indicated distinct
pathways of information flows among brain regions for the
different calculations. Taken together, complex social cognition,
such as impression management, or human motives, requires
re-configuration of directional pathways for information flows in
a brain network in addition to the magnitude of neural responses
in the component brain regions.

Remarkably, the differences in directional connectivity
identified by our use of the modified Granger causality (in
consideration of SDN) capture the behavioral features exposed by
the two-person bargaining game. During the game, the strategists
adopt a forward-looking, longer-term strategy of manipulating
their reputation in the eyes of their partners in order to increase
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their aggregate rewards–notably this strategy requires them to
switch between “reputation-building” and collecting rewards
depending upon the information in the current trial (Bhatt et al.,
2010). When the value of the object is high, the strategists
switch from building their reputation in their partner’s mind to
collecting rewards based on that reputation. However, it remains
unclear what neural activity triggered this strategic switch. The
stronger directional connectivity identified in the current study
for the strategists suggested that the information flows from both
the RSC and dACC to the rPFCwere involved in the recalculation
of more sophisticated strategy at rPFC (Knoch et al., 2006;
Yoshida et al., 2010). This involvement was further supported by
the observation that the strengths of the directional connectivity
from both RSC and dACC to rPFC were positively associated
with a behavioral indicator of social strategy during the game.
The RSC has been related to prospective thinking (Vann et al.,
2009), and the dACC has been thought to regulating cognitive
control over goal-directed behavior (Bush et al., 2002; Brown
and Braver, 2005; Carter and van Veen, 2007). Together, these
results suggested that the stimulus driven attention (reflected
by the directional connectivity dACC→rPFC, Bush et al.,
2002) was combined with the prospective thinking (supported
by the directional interaction RSC→rPFC; Vann et al., 2009)
at the rPFC, and the repeated interactions between stimulus
and response paved the way to a more sophisticated strategy.
Alternatively, another possible explanation of the observed
stronger directional influence of both RSC and dACC on the
rPFC can be explained by an increased neural workload of the
strategic deception, as the higher activation at the rPFC in the
strategist group, instead of the higher engagement of the network.
To demonstrate that the estimated directional connectivity did
bring extra information for our understanding of the underlying
neural basis of the strategic deception, we tested if including
the directional connectivity could improve the classification
accuracy for strategic deception. Indeed, we had observed
a statistically significant improvement in the classification
accuracy, which suggests that the directional connectivity brings
extra information about the neural mechanism underlying the
bargaining behavior.

The presence of the SDN in BOLD signal suggests an influence
of one brain region on the variance in the brain activation of
another region beyond the influence on its mean activation. As
demonstrated in our previous paper (Luo et al., 2011), classical
analysis of causality, which relied on the presumption of Gaussian
white noise, failed to estimate reliable directional connectivity in
such case. Several studies have discussed the potential importance
of such SDN for the analysis of neural data both theoretically
(Feng and Tuckwell, 2003; Tanaka et al., 2006; Kang et al., 2010)
and experimentally (Harris and Wolpert, 1998; Jones et al., 2002;
Luo et al., 2011). Our previous study showed an important
role of the SDN in the modulation of taste circuit in the brain
(Luo et al., 2013). The current study further confirmed that the
presence of SDN in the fMRI signal, which was an important
factor to be considered when developing methods to explore
the neural circuitry of social interaction. The errors computed
using the standard ARmodel showed significant correlation with
the signal level in this data set, calling the results of classical

FIGURE 4 | Significant behavioral associations of directional connectivity. (A)

Scatter plot of directional connectivity against information revelation. The fitted

least-square line was also shown. (B) Brain map of directional connectivity

with significant behavioral association.

FIGURE 5 | Performances of classifiers for strategic type by Receiver

Operating Characteristic curve. The classifiers of strategist were trained by

support vector machine with different sets of features, such as the estimation

of brain activations at each ROI, or the estimated strength of directional

connectivity among the selected ROIs, or both.

Granger causality inferences into question. The sensitivity of
these inference methods to this kind of noise is an important
finding in itself (Luo et al., 2011).

GCA has been recognized as a promisemethod for fMRI based
analysis of directional connectivity between brain regions, as long
as its features are appropriately considered during interpretation
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of the results (Friston et al., 2013; Seth et al., 2015). The classical
GCA on BOLD signal may have potential confounding factors,
such as regional variation of HRF (David et al., 2008; Friston,
2009; Smith et al., 2011). However, it has been theoretically (Seth
et al., 2013; Tao and Feng, 2016) and empirically (Schippers et al.,
2011; Wen et al., 2013b) demonstrated that the results of GCA
are reliable under moderate conditions, such as the neuronal
delays between regions are above 1 s. Practically, cognitively
meaningful associations of the directional connectivity estimated
by GCA have been reported in task fMRI experiments (Wen
et al., 2012, 2013a; Kadosh et al., 2016; Pu et al., 2016), and
physiologicallymeaningful differences have also been observed in
GCA-established directional connectivity (Hamilton et al., 2011;
Palaniyappan et al., 2013; Ding et al., 2015). These previous
successful applications of the GCA to fMRI experiment as well
as the current work have a common nature that we focus on
the changes in the Granger causality by considering it as a
function of experimental settings, instead of trying to interpreting
them at the hemodynamic level in neural terms. Nevertheless,
these methods for causal inference are currently in their early
stages and these results should be taken as suggestive. However,
increasingly sophisticated methods for causal inference using
fMRI data, such as the method applied in the paper, promise
to significantly increase our understanding of neural function.
The proposed method can be considered as one step ahead
compared with the classic GCA. As pointed out in a most recent
paper (Stokes and Purdon, 2017), the classic GCA does not
dependent on receiver dynamics, which might be problematic for
interpreting the cause and effect in neural systems. Different from
the classic GCA, the proposedmodel assumes that the input noise
process of the system is dependent on the signal of the system,
and thereby both the cause and receiver dynamics are reflected in
the resulting causality.

The value-dependent switch between reputation building and
reward collecting is of particular interest in this game, but the
current event-driven paradigm of the fMRI experiment only
gave us limited data points for each condition (i.e., high or low
value trial), especially when the decision time of the buyers was
shortened (3 or 4 scans) at the second half of the game. Excluding
the inter-trial data points, we had averagely 127 data points
of each subject for connectivity analysis. With such a limited
number of data points, we could not estimate reliable directional
connectivity for the high and low value trials, respectively.
Due to this reason, we also did not include the region right
temporoparietal junction (rTPJ) in our model, as the activity
of rTPJ was shown as value-modulated in our previous study
(Bhatt et al., 2010). In addition, as the decision time differed from

each subject, we could not align the trials across subjects, and

thereby it is also difficult to investigate the dynamic changes of
the directional connectivity during the game. These issues need
to be addressed in the future studies.

In conclusion, different routes of the information flows
support various brain functions and generate distinct behavior
in response to environment. Here, we observed significant
improvement in identification of strategic deception by
including directional connectivity among key brain regions.
The current work lends new evidence for the importance of
directional connectivity in understanding sophisticated social
cognition.
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